Revisiting Maximum-A-Posteriori Estimation in Log-Concave Models

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum likelihood estimation of a multi- dimensional log-concave density

Let X1, . . . ,Xn be independent and identically distributed random vectors with a (Lebesgue) density f. We first prove that, with probability 1, there is a unique log-concave maximum likelihood estimator f̂n of f. The use of this estimator is attractive because, unlike kernel density estimation, the method is fully automatic, with no smoothing parameters to choose. Although the existence proof ...

متن کامل

Smoothed log-concave maximum likelihood estimation with applications

We study the smoothed log-concave maximum likelihood estimator of a probability distribution on Rd. This is a fully automatic nonparametric density estimator, obtained as a canonical smoothing of the log-concave maximum likelihood estimator. We demonstrate its attractive features both through an analysis of its theoretical properties and a simulation study. Moreover, we use our methodology to d...

متن کامل

Maximum Likelihood Estimation in Log - Linear Models

We study maximum likelihood estimation in log-linear models under conditional Poisson sampling schemes. We derive necessary and sufficient conditions for existence of the maximum likelihood estimator (MLE) of the model parameters and investigate estimability of the natural and mean-value parameters under a non-existent MLE. Our conditions focus on the role of sampling zeros in the observed tabl...

متن کامل

Population pharmacokinetic/pharmacodynamic mixture models via maximum a posteriori estimation

Pharmacokinetic/pharmacodynamic phenotypes are identified using nonlinear random effects models with finite mixture structures. A maximum a posteriori probability estimation approach is presented using an EM algorithm with importance sampling. Parameters for the conjugate prior densities can be based on prior studies or set to represent vague knowledge about the model parameters. A detailed sim...

متن کامل

Maximum a Posteriori Estimation of Coupled Hidden Markov Models

Coupled Hidden Markov Models (CHMM) are a tool which model interactions between variables in state space rather than observation space. Thus they may reveal coupling in cases where classical tools such as correlation fail. In this paper we derive the maximum a posteriori equations for the Expectation Maximization algorithm. The use of the models is demonstrated on simulated data, as well as in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Imaging Sciences

سال: 2019

ISSN: 1936-4954

DOI: 10.1137/18m1174076